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Problem Setup

Premise: To devise a sample-efficient linear-convergence algorithm for phase
retrieval of (structured) s-sparse signals from Gaussian measurements.

Main Challenges

I Linear-convergence algorithms have sample complexity with quadratic
dependence on sparsity m = O

(
s2 log n

)
.

I High number of tuning parameters.

I Lower sample complexity algorithms require high run time, not scalable.

Prior Work

I Convex: PhaseLift, PhaseMax.
Drawbacks: Computationally
expensive, poor emperical
performance.

I Non-convex: AltMinPhase,
Wirtinger Flow. Faster, scalable.
Drawbacks: Sample complexity
depends on selecting good initial
point. Parametric inputs.

I Designed sensing matrices:
Matrices with low underlying
dimension or Fourier-like.
Drawbacks: Harder to analyze
theoretical guarantees.

I Structured sparsity models: Utilized
for sparse signal recovery, statistical
learning applications.
Drawbacks: No rigorous results
for phase retrieval problem.

Reproduced from [F78] J. Fienup, ”Reconstruction of an

object from the modulus of its Fourier transform.”

Optics letters, 1978.

Our Objective

We devise a phase-retrieval algorithm that:
I Utilizes underlying structured sparsity in signals for efficient analysis.
I Is naturally compatible with standard sparse recovery algorithms.
I Is fast and scalable to large datasets of large dimensions.

I Has sub-quadratic sample complexity m = O
(
s2

b log n
)

.

I Requires no extra parametric inputs apart from (block) sparsity k = s
b.

New Direction: Phase retrieval of structured sparse signals

Idea: Efficient phase retrieval algorithms for structured sparse signals.
Problem Setup: Recover signal x∗ ∈ Rn, using Gaussian sampling matrix
A = [a1 . . . am]>, from measurements y ∈ Rm,

yi = |〈ai, x
∗〉| , for i = 1, . . . ,m.

x∗ is part of model Ms,b formed of uniformly block sparse signals with block
length b, effective block sparsity k = s/b and total number of blocks nb = n/b.

Solution Methodology

Formulate the above as a two-step problem, by introducing diagonal phase
matrix P ∈ P with Pii = sign

(
ai
>x
)
∈ {1,−1}, and alternatively minimize the

loss function over variables x and P:

min
x∈M,P∈P

‖Ax− Py‖2 .

This strategy requires a good initial point, to converge to minimum. For this, we
introduce our algorithm Block Compressive Phase Retrieval with Alternating
Minimization (Block CoPRAM) [JH17].

Block CoPRAM - Smart Initialization

Setup: Define signal marginals as Mjj = 1
m

∑n
i=1 y

2
i a

2
ij , for j ∈ {1 . . . n}.

Objective: Find good initial estimate x0 of the true signal x∗.

Challenge: Designing block marginals. Performance guarantees.

Block CoPRAM - Smart Initialization (Cont.)

Solution: (Alg. 1)

I Define block marginals as Mjbjb =
√∑

j∈jb M
2
jj , for jb ∈ {1 . . . nb}.

I Retain top k block marginals; call the index set Ŝ , card(Ŝ) = s.
I Construct matrix (∈ Rs×s) MŜ = 1

m

∑m
i=1 y

2
i ai Ŝai

>
Ŝ

.

I Initial estimate x0 = φv, v is top-singular-vec(MŜ), where φ =
√

1
m

∑m
i=1 y

2
i .

Guarantees: Theorem 1

The initial vector x0, which is the output of Alg. 1, is a small constant
distance δb away from the true signal x∗, i.e.,

dist
(
x0, x∗

)
≤ δb ‖x∗‖2 ,

where 0 < δb < 1, as long as the number of measurements satisfy
m ≥ C s2

b logmn with probability greater than 1− 8
m.

Block CoPRAM - Descent

Setup: Use the initialization x0 from Alg. 1.

Objective: Gradually descend to k-block sparse solution x∗.

Challenge: Performance guarantees for convergence.

Solution: (Alg. 2)
Use alternating minimization with model CoSAMP to solve the non-convex
problem:

I Phase estimation: Pt = diag (sign (Axt)).
I Signal estimation: xt ≈ minx∈Ms,b

‖Ax− Py‖2 via model CoSAMP.

Guarantees: Theorem 2

Given an initialization x0 satisfying Alg. 1, if number of measurements
m ≥ C

(
s + s

b log n
s

)
, then the iterates of Alg. 2 satisfy:

dist
(
xt+1, x∗

)
≤ ρbdist (xt, x∗) .

where 0 < ρb < 1 is a constant, with probability greater than 1− e−γm, for
positive constant γ.

Results

Phase transitions: Block CoPRAM v/s CoPRAM, SPARTA,
Thresholded Wirtinger Flow (ThWF).

CoPRAM is a special case of Block CoPRAM with b = 1.

Block
CoPRAM

CoPRAM ThWF SPARTA
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(a) Sparsity s = 30 and block length b = 5.
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(b) Sparsity s = 20 and different block
lengths (Block CoPRAM only).

Figure 1: Phase transitions for signal length n = 3, 000.

(a) CoPRAM (b) Block CoPRAM

Figure 2: Phase transition for signal length n = 3, 000 and block length b = 5 and different
sparsity levels.
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