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Problem Setup

Block CoPRAM - Smart Initialization (Cont.)

Premise: To devise a sample-efficient linear-convergence algorithm for phase Solution: (Alg. 1)

retrieval of (structured) s-sparse signals from Gaussian measurements. » Define block marginals as M, = \/Zjejb M2, for j, € {1...np}.

Main Challenges ’

» Retain top k block marginals; call the index set S, card(§) = s.

1

» Linear-convergence algorithms have sample complexity with quadratic .
5 5 P PIEAIY \ » Construct matrix (€ R**°) Mg = — Z:-n:ly,?a,-ga,-g.

dependence on sparsity m = O (52 log n).
» High number of tuning parameters. » Initial estimate x% = ¢v, v is top-singular-vec(M¢), where ¢ = \/% ST yE

» Lower sample complexity algorithms require high run time, not scalable. Guarantees: Theorem 1

The initial vector x®, which is the output of Alg. 1, is a small constant
distance 0, away from the true signal x*, i.e.,

Prior Work dist (x%, x*) < 0 [|x*|,

> Convex: Phaselift. PhaseMax where 0 < 0, < 1, as long as the number of measurements satisfy
. y . SRR 2 : i
e m > C=3-log mn with probability greater than 1 — %.

Drawbacks: Computationally
expensive, poor emperical
performance.

Block CoPRAM - Descent

» Non-convex: AltMinPhase, Setup: Use the initialization x? from Alg. 1.

Wirtinger Flow. Faster, scalable.
Drawbacks: Sample complexity
depends on selecting good initial
point. Parametric inputs.

Objective: Gradually descend to k-block sparse solution x*.

Challenge: Performance guarantees for convergence.

Solution: (Alg. 2)
Use alternating minimization with model CoSAMP to solve the non-convex
oroblem:

» Designed sensing matrices:
Matrices with low underlying
dimension or Fourier-like.

» Phase estimation: P* = diag (sign (Ax")).
> Signal estimation: x* ~ minyc a4, , ||Ax — Py||, via model CoSAMP.

Drawbacks: Harder to analyze (g) (h)
theoretical guarantees. Fiz.  (a) Test object; (b) modulus of its Fourier transform: Guarantees: Theorem 2
. - (c) initial estimate of the object (first test); (d)-(f) recon- ) . . . : ; : :
» Structured sparsity models: Utilized struction results—number of iterations: (d) 20, (&) 230, (f) Given an initialization x? satisfying Alg. 1, if number of measurements

i .. 600; (g) initial estimate of the object (second test); (h)—(i) re- s n - ;
for sparse signal recovery, statistical construction results—number of iterations: (h) 2, (i) 215. m> C (5 =+ = log 2)1 then the iterates of Alg. 2 satisfy:
learning applications. - S - t

Reproduced from [F78| J. Fienup, " Reconstruction of an dist (X y X ) < pdeSt (X y X ) ‘

Drawbacks: No rigorous results

object from the modulus of its Fourier transform.”

where 0 < pp < 1 is a constant, with probability greater than 1 — e ", for
positive constant .

Qur Objective Phase transitions: Block COPRAM v/s CoPRAM, SPARTA,

for phase retrieval problem. Optics letters, 1978,

We devise a phase-retrieval algorithm that: Thresholded Wirtinger Flow (ThWF).
» Utilizes underlying str.uctured sparsity in signals for efficient analysis. CoPRAM is a special case of Block COPRAM with b = 1.
» |Is naturally compatible with standard sparse recovery algorithms.
» Is fast and scalable to large datasets of large dlznensmns. e PK 0 CoraM o THUF e SPARTA o D bl oS s b2
» Has sub-quadratic sample complexity m = O (% log n). - | \ | \ | -
» Requires no extra parametric inputs apart from (block) sparsity k = 7. O; O;
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Idea: Efficient phase retrieval algorithms for structured sparse signals. 503 g3
Problem Setup: Recover signal x* € R”, using Gaussian sampling matrix . .
A=]a;... am]T, from measurements y € R”, 0| | 0|
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x* is part of model M, ;, formed of uniformly block sparse signals with block (a) Sparsity s = 30 and block length b =5. (b) Sparsity s = 20 and different block
length b, effective block sparsity k = s/b and total number of blocks n, = n/b. lengths (Block CoPRAM only).
Figure 1: Phase transitions for signal length n = 3, 000.
Solution Methodology
Formulate the above as a two-step problem, by introducing diagonal phase
matrix P € P with P; = sign (a,-Tx) € {1, —1}, and alternatively minimize the
loss function over variables x and P:
min ||Ax — Py||,.
xeM,PeP H yH2
This strategy requires a good initial point, to converge to minimum. For this, we
introduce our algorithm Block Compressive Phase Retrieval with Alternatin | | | | | ' | | | '
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Minimization (Block CoPRAM) [JH17]. 5 3
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Figure 2: Phase transition for signal length n = 3,000 and block length b = 5 and different
sparsity levels.

Block CoPRAM - Smart Initialization

Setup: Define signal marginals as M;; = = >"" | y?aZ, for j € {1...n}.

Objective: Find good initial estimate x° of the true signal x*.
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